3.1.97 \(\int (a+a \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [97]

3.1.97.1 Optimal result
3.1.97.2 Mathematica [A] (verified)
3.1.97.3 Rubi [A] (verified)
3.1.97.4 Maple [B] (verified)
3.1.97.5 Fricas [A] (verification not implemented)
3.1.97.6 Sympy [F(-1)]
3.1.97.7 Maxima [B] (verification not implemented)
3.1.97.8 Giac [A] (verification not implemented)
3.1.97.9 Mupad [F(-1)]

3.1.97.1 Optimal result

Integrand size = 35, antiderivative size = 184 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a^{5/2} (19 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}-\frac {a^3 (27 A-56 C) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}-\frac {a^2 (21 A-8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {5 a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d} \]

output
1/4*a^(5/2)*(19*A+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/ 
d-1/12*a^3*(27*A-56*C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)-1/12*a^2*(21*A- 
8*C)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d+5/4*a*A*(a+a*cos(d*x+c))^(3/2)*ta 
n(d*x+c)/d+1/2*A*(a+a*cos(d*x+c))^(5/2)*sec(d*x+c)*tan(d*x+c)/d
 
3.1.97.2 Mathematica [A] (verified)

Time = 0.55 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.74 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \left (6 \sqrt {2} (19 A+8 C) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^2(c+d x)+4 (6 A+32 C+(33 A+6 C) \cos (c+d x)+32 C \cos (2 (c+d x))+2 C \cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d} \]

input
Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3 
,x]
 
output
(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(6*Sqrt[2] 
*(19*A + 8*C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^2 + 4*(6*A + 
32*C + (33*A + 6*C)*Cos[c + d*x] + 32*C*Cos[2*(c + d*x)] + 2*C*Cos[3*(c + 
d*x)])*Sin[(c + d*x)/2]))/(48*d)
 
3.1.97.3 Rubi [A] (verified)

Time = 1.26 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.08, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3523, 27, 3042, 3454, 27, 3042, 3455, 27, 3042, 3460, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a \cos (c+d x)+a)^{5/2} \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int \frac {1}{2} (\cos (c+d x) a+a)^{5/2} (5 a A-a (3 A-4 C) \cos (c+d x)) \sec ^2(c+d x)dx}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^{5/2} (5 a A-a (3 A-4 C) \cos (c+d x)) \sec ^2(c+d x)dx}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2} \left (5 a A-a (3 A-4 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\int \frac {1}{2} (\cos (c+d x) a+a)^{3/2} \left (a^2 (19 A+8 C)-a^2 (21 A-8 C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{2} \int (\cos (c+d x) a+a)^{3/2} \left (a^2 (19 A+8 C)-a^2 (21 A-8 C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a^2 (19 A+8 C)-a^2 (21 A-8 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {1}{2} \left (\frac {2}{3} \int \frac {1}{2} \sqrt {\cos (c+d x) a+a} \left (3 a^3 (19 A+8 C)-a^3 (27 A-56 C) \cos (c+d x)\right ) \sec (c+d x)dx-\frac {2 a^3 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{2} \left (\frac {1}{3} \int \sqrt {\cos (c+d x) a+a} \left (3 a^3 (19 A+8 C)-a^3 (27 A-56 C) \cos (c+d x)\right ) \sec (c+d x)dx-\frac {2 a^3 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} \left (\frac {1}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 a^3 (19 A+8 C)-a^3 (27 A-56 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a^3 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {\frac {1}{2} \left (\frac {1}{3} \left (3 a^3 (19 A+8 C) \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-\frac {2 a^4 (27 A-56 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {2 a^3 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} \left (\frac {1}{3} \left (3 a^3 (19 A+8 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a^4 (27 A-56 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {2 a^3 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\frac {1}{2} \left (\frac {1}{3} \left (-\frac {6 a^4 (19 A+8 C) \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {2 a^4 (27 A-56 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {2 a^3 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {5 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}+\frac {1}{2} \left (\frac {1}{3} \left (\frac {6 a^{7/2} (19 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {2 a^4 (27 A-56 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {2 a^3 (21 A-8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{5/2}}{2 d}\)

input
Int[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]
 
output
(A*(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (((-2*a^3 
*(21*A - 8*C)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d) + ((6*a^(7/2)*( 
19*A + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - 
(2*a^4*(27*A - 56*C)*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/3)/2 + (5 
*a^2*A*(a + a*Cos[c + d*x])^(3/2)*Tan[c + d*x])/d)/(4*a)
 

3.1.97.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.1.97.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(801\) vs. \(2(160)=320\).

Time = 62.57 (sec) , antiderivative size = 802, normalized size of antiderivative = 4.36

method result size
parts \(\text {Expression too large to display}\) \(802\)
default \(\text {Expression too large to display}\) \(1064\)

input
int((a+cos(d*x+c)*a)^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method=_RETUR 
NVERBOSE)
 
output
1/2*A*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(76*a*(ln( 
4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a* 
sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1 
/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)* 
a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^4+(-44*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*a^(1/2)-76*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d* 
x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a-76*ln(-4/( 
2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin 
(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^2+26*2^(1/2)* 
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+19*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/ 
2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a 
^(1/2)+2*a))*a+19*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2* 
d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)/(2*cos( 
1/2*d*x+1/2*c)+2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^2/sin(1/2*d*x+1/2 
*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+1/6*C*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(-8*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin( 
1/2*d*x+1/2*c)^2+3*2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a* 
cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+ 
3*2^(1/2)*ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2* 
c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+36*a^(1/2)*(a...
 
3.1.97.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.16 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {3 \, {\left ({\left (19 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + {\left (19 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (8 \, C a^{2} \cos \left (d x + c\right )^{3} + 64 \, C a^{2} \cos \left (d x + c\right )^{2} + 33 \, A a^{2} \cos \left (d x + c\right ) + 6 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{48 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algori 
thm="fricas")
 
output
1/48*(3*((19*A + 8*C)*a^2*cos(d*x + c)^3 + (19*A + 8*C)*a^2*cos(d*x + c)^2 
)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + 
c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + c 
os(d*x + c)^2)) + 4*(8*C*a^2*cos(d*x + c)^3 + 64*C*a^2*cos(d*x + c)^2 + 33 
*A*a^2*cos(d*x + c) + 6*A*a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*c 
os(d*x + c)^3 + d*cos(d*x + c)^2)
 
3.1.97.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)
 
output
Timed out
 
3.1.97.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3668 vs. \(2 (160) = 320\).

Time = 3.44 (sec) , antiderivative size = 3668, normalized size of antiderivative = 19.93 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algori 
thm="maxima")
 
output
-1/16*(150*sqrt(2)*a^2*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 154*sqrt(2) 
*a^2*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) - 28*sqrt(2)*a^2*sin(3/2*d*x + 
3/2*c) + 44*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) - (3*sqrt(2)*a^2*sin(7/2*d*x 
+ 7/2*c) + 5*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) - 17*sqrt(2)*a^2*sin(3/2*d*x 
 + 3/2*c) - 55*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) + 19*a^2*log(2*cos(1/2*d*x 
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 
+ 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*si 
n(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2* 
d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 
1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)) 
*cos(4*d*x + 4*c)^2 + 4*(17*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 55*sqrt(2)* 
a^2*sin(1/2*d*x + 1/2*c) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 
 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c 
)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) 
 - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt 
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*lo 
g(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1...
 
3.1.97.8 Giac [A] (verification not implemented)

Time = 1.51 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.16 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=-\frac {\sqrt {2} {\left (64 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 288 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, \sqrt {2} {\left (19 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 8 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {12 \, {\left (22 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 13 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{48 \, d} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algori 
thm="giac")
 
output
-1/48*sqrt(2)*(64*C*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 
 288*C*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) + 3*sqrt(2)*(19* 
A*a^2*sgn(cos(1/2*d*x + 1/2*c)) + 8*C*a^2*sgn(cos(1/2*d*x + 1/2*c)))*log(a 
bs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/ 
2*c))) + 12*(22*A*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 1 
3*A*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1 
/2*c)^2 - 1)^2)*sqrt(a)/d
 
3.1.97.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^3,x)
 
output
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^3, x)